High Performance Nozzle for Mars Ascent Vehicle, Phase I

Completed Technology Project (2015 - 2015)

Project Introduction

ASTS is pleased to propose to demonstrate the feasibility of using an aerospike nozzle to provide a dramatic increase in payload capability to the two-stage, all-solid-propulsion Mars Ascent Vehicle (MAV). The aerospike features a well-known altitude compensation capability, but the MAV operates in near-vacuum conditions so cannot take advantage of that aspect. Instead, the aerospike nozzle, at a comparable ~200:1 area ratio as is currently baselined for MAV, will be considerably shorter than a traditional bell nozzle. Thus, for a fixed motor length, a shorter aerospike nozzle will allow us to lengthen the motor case itself, thereby enabling us to load a substantial amount of additional propellant than the baseline. The resultant improvement in propellant fraction will provide significantly higher payload performance compared to the baseline--our preliminary calculations show that up to 40% additional propellant can be added to the each motor.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
ASRC Federal	Lead	Industry	Huntsville,
Astronautics, LLC	Organization		Alabama
Marshall Space Flight	Supporting	NASA	Huntsville,
Center(MSFC)	Organization	Center	Alabama

High Performance Nozzle for Mars Ascent Vehicle, Phase I

Table of Contents

Project Introduction	
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Images	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

High Performance Nozzle for Mars Ascent Vehicle, Phase I

Completed Technology Project (2015 - 2015)

Primary U.S. Work Locations

Alabama

Project Transitions

June 2015: Project Start

December 2015: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/139058)

Images

Briefing Chart

High Performance Nozzle for Mars Ascent Vehicle Briefing Chart (https://techport.nasa.gov/imag e/127574)

Final Summary Chart Image

High Performance Nozzle for Mars Ascent Vehicle, Phase I Project Image

(https://techport.nasa.gov/imag e/134797)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

ASRC Federal Astronautics, LLC

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

Richard D Kramer

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

High Performance Nozzle for Mars Ascent Vehicle, Phase I

Completed Technology Project (2015 - 2015)

Technology Areas

Primary:

- TX01 Propulsion Systems

 TX01.1 Chemical Space

 Propulsion
 - └─ TX01.1.1 Integrated Systems and Ancillary Technologies

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

